LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS
 SECOND SEMESTER - APRIL 2010
 PH 2811 / 2808 - QUANTUM MECHANICS

Date \& Time: 19/04/2010 / 1:00-4:00

Dept. No.

Max. : 100 Marks

$\underline{\text { Part - A }}(10 \times 2=20$ Marks $)$

(Answer all questions)

1. If $[X, Y]=1$, find $\left[X, Y^{2}\right]$.
2. Show that commuting operators have simultaneous eigen functions.
3. Express position and momentum operators of a linear harmonic oscillator in terms of the operators 'a' and ' ${ }^{+}$',
4. What are the eigen values of the parity operator? Show that the parity operator can have only two eigen values.
5. Express angular momentum operator \hat{L}^{2} in terms of \hat{r} and \hat{p}, where \hat{r} is position operator and \hat{p} is the momentum operator.
6. If $\left|\alpha_{1}\right\rangle=\left[\begin{array}{c}\cos \theta \\ -\sin \theta\end{array}\right]$ and $\left|\alpha_{2}\right\rangle=\left[\begin{array}{c}\sin \theta \\ \cos \theta\end{array}\right]$ show that $\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle=\delta_{i j}$ and $\sum_{i}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|=1$.
7. Show that $\sigma^{2}=3$, where σ is the spin operator.
8. Show that $e^{i(\sigma . m) \theta / 2}=\cos \left(\frac{\theta}{2}\right)+i(\sigma . n) \sin \left(\frac{\theta}{2}\right)$
9. What is the first order correction to energy in the case of time - independent perturbation for a nondegenerate energy level?
10. What is the usefulness of variation method? On what assumption is it based?

$\underline{\text { Part - B (} 4 \times 7.5=30 \text { Marks) }) ~}$

(Answer any four questions)

11. Obtain Heisenberg's uncertainty relation, using commutation bracket algebra.
12. a. If p and q are momentum and position operators and $a=\left[\lambda q+i\left(\frac{p}{\lambda}+\mu q\right)\right] / \sqrt{2 \mathrm{~h}}$, where λ and μ are real, estimate $\left[a, a^{+}\right]$. (5)
b. If $a|n>=\sqrt{n}| n-1>$ and $a^{+} a|n>=n| n>$, find the action of a^{+}on $\mid n>$
13. a.The base vectors of a representation are $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Construct the transformation matrix ' U ' for transforming these vectors in to another representation having base vectors $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
b.If an operator $\mathrm{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ in the first representation, what is its form in the second one? (2.5)
14. Show that $e^{i \sigma_{x} \pi / 2} \sigma_{y} e^{-i \sigma_{z} \pi / 2}=-\sigma_{y}$, where $\sigma_{x} \& \sigma_{y}$ are Pauli's spin matrices (4)

Show that for Pauli's spin matrices, $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \quad$ (3.5)
15. Obtain the first order perturbation equation and the corrected wave functions of the system.

Part - C (4 x 12.5 = 50 Marks)

(Answer any four questions)
16. Obtain Newton's second law of motion from Ehrenfest's theorem.
17. Find the transmission coefficient of a particle moving along the x-axis encountering a potential barrier of breadth ' a ' and height V_{0}, if the energy of the particle $E<V_{0}$
18. Define time reversal operator \hat{T}. How does it affect the Hamiltonian of a system? What is its effect on the commutator $\left[x, p_{x}\right.$] and how does the Schrodinger wave equation transform under time reversal? Find the norm of \hat{T}
19. Obtain the matrix representation of operators $J^{2}, J_{x}, J_{y}, J_{z}, J_{+} J_{-}$for a particle with $\mathrm{j}=1$
20. Obtain the ground state energy of the Hydrogen molecule using the variation method.
$* * * * * * *$

